Search: in
Efflux (microbiology)
Efflux (microbiology) in Encyclopedia Encyclopedia
  Tutorials     Encyclopedia     Videos     Books     Software     DVDs  

Efflux (microbiology)

Active efflux is a mechanism responsible for extrusion of toxic substances and antibiotics outside the cell; this is considered to be a vital part of xenobiotic metabolism. This mechanism is important in medicine as it can contribute to bacterial antibiotic resistance.

Efflux systems function via an energy-dependent mechanism (Active transport) to pump out unwanted toxic substances through specific efflux pumps. Some efflux systems are drug-specific, whereas others may accommodate multiple drugs, and thus contribute to bacterial multidrug resistance (MDR).


  • Bacteria
    • Bacterial efflux pumps
    • Function
    • Impact on antimicrobial resistance
  • Eukaryotes
  • Efflux inhibitors
  • See also
  • References


Bacterial efflux pumps

Efflux pumps are proteinaceous transporters localized in the cytoplasmic membrane of all kinds of cells. They are active transporters, meaning that they require a source of chemical energy to perform their function. Some are primary active transporters utilizing Adenosine triphosphate hydrolysis as a source of energy, whereas others are secondary active transporters (uniporters, symporters, or antiporters) in which transport is coupled to an electrochemical potential difference created by pumping out hydrogen or sodium ions outside the cell.
Bacterial efflux transporters are classified into five major superfamilies, based on the amino acid sequence and the energy source used to export their substrates:

  1. The major facilitator superfamily (MFS)
  2. The ATP-binding cassette superfamily (ABC)
  3. The small multidrug resistance family (SMR)
  4. The resistance-nodulation-cell division superfamily (RND)
  5. The Multi antimicrobial extrusion protein family (MATE).

Of these, only the ABC superfamily are primary transporters, the rest being secondary transporters utilizing proton or sodium gradient as a source of energy. Whereas MFS dominates in Gram positive bacteria, the RND family is unique to Gram-negatives.


Although antibiotics are the most clinically important substrates of efflux systems, it is probable that most efflux pumps have other natural physiological functions. Examples include:

  • The E. coli AcrAB efflux system, which has a physiologic role of pumping out bile acids and fatty acids to lower their toxicity.
  • The MFS family Ptr pump in Streptomyces pristinaespiralis appears to be an autoimmunity pump for this organism when it turns on production of pristinamycins I and II.
  • The AcrAB TolC system in E.coli is suspected to have a role in the transport of the calcium-channel components in the E. coli membrane.
  • The MtrCDE system plays a protective role by providing resistance to faecal lipids in rectal isolates of Neisseria gonorrhoeae.
  • The AcrAB efflux system of Erwinia amylovora is important for this organism's virulence, plant (host) colonization, and resistance to plant toxins.
  • The MexXY component of the MexXY-OprM multidrug efflux system of P. aeruginosa is inducible by antibiotics that target ribosomes via the PA5471 gene product.[1]

The ability of efflux systems to recognize a large number of compounds other than their natural substrates is probably because substrate recognition is based on physicochemical properties, such as hydrophobicity, aromaticity and ionizable character rather than on defined chemical properties, as in classical enzyme-substrate or ligand-receptor recognition. Because most antibiotics are amphiphilic molecules - possessing both hydrophilic and hydrophobic characters - they are easily recognized by many efflux pumps.

Impact on antimicrobial resistance

The impact of efflux mechanisms on antimicrobial resistance is large; this is usually attributed to the following:

  • The genetic elements encoding efflux pumps may be encoded on chromosomes and/or plasmids, thus contributing to both intrinsic (natural) and acquired resistance respectively. As an intrinsic mechanism of resistance, efflux pump genes can survive a hostile environment ( for example in the presence of antibiotics) which allows for the selection of mutants that over-express these genes. Being located on transportable genetic elements as plasmids or transposons is also advantageous for the microorganisms as it allows for the easy spread of efflux genes between distant species.
  • Antibiotics can act as inducers and regulators of the expression of some efflux pumps.[1]
  • Expression of several efflux pumps in a given bacterial species may lead to a broad spectrum of resistance when considering the shared substrates of some multi-drug efflux pumps, where one efflux pump may confer resistance to a wide range of antimicrobials.


In eukaryotic cells, the existence of efflux pumps has been known since the discovery of p-glycoprotein in 1976 by Juliano and Ling. Efflux pumps are one of the major causes of anticancer drug resistance in eukaryotic cells. These include monocarboxylate transporters (MCTs), multiple drug resistance proteins (MDRs)- also referred as p-glycoprotein, multidrug resistance-associated proteins (MRPs), peptide transporters (PEPTs), and Na+ phosphate transporters (NPTs). These transporters are distributed along particular portions of the renal proximal tubule, intestine, liver, blood-brain barrier, and other portions of the brain.

Efflux inhibitors

Several trials are currently being conducted to develop drugs that can be co-administered with antibiotics to act as inhibitors for the efflux-mediated extrusion of antibiotics. None of the efflux inhibitors tested is yet in clinical use. However, some of them are used to determine the efflux prevalence in clinical isolates. Its shown that Verapamil can inhibit P-glycoprotein mediated efflux which can increase oral absorption of some compounds. Some chemicals found in plants have potential as reflex pump inhibitors. Chemicals such as Capsanthin and capsorubin, carotenoids isolated from paprika; the flavonoids, rotenone, chrysin, phloretin and sakuranetin.[2]

See also

  • Antibiotic resistance


de:Effluxpumpe nl:Efflux

Source: Wikipedia | The above article is available under the GNU FDL. | Edit this article

Search for Efflux (microbiology) in Tutorials
Search for Efflux (microbiology) in Encyclopedia
Search for Efflux (microbiology) in Videos
Search for Efflux (microbiology) in Books
Search for Efflux (microbiology) in Software
Search for Efflux (microbiology) in DVDs
Search for Efflux (microbiology) in Store


Efflux (microbiology) in Encyclopedia
Efflux_(microbiology) top Efflux_(microbiology)

Home - Add TutorGig to Your Site - Disclaimer

©2011-2013 All Rights Reserved. Privacy Statement