A ball on the top of a hill is an unstable situation.
In numerous fields of study, the component of instability within a system is generally characterized by some of the outputs or internal states growing without bounds. Not all systems that are not stable are unstable; systems can also be marginally stable or exhibit limit cycle behavior.
In control theory, a system is unstable if any of the roots of its characteristic equation has real part greater than zero (or if zero is a repeated root). This is equivalent to any of the eigenvalues of the state matrix having either real part greater than zero, or, for the eigenvalues on the imaginary axis, the algebraic multiplicity being larger than the geometric multiplicity.
In structural engineering, a structure can become unstable when excessive load is applied. Beyond a certain threshold, structural deflections magnify stresses, which in turn increases deflections. This can take the form of buckling or crippling. The general field of study is called structural stability.
Atmospheric instability is a major component of all weather systems on Earth.
Fluid instabilities
Unstable flow structure generated from the collision of two impinging jets.
Fluid instabilities occur in liquids, gases and plasmas, and are often characterized by the shape that form; they are studied in fluid dynamics and magnetohydrodynamics. Fluid instabilities include:
Plasma instabilities
Plasma instabilities can be divided into two general groups (1) hydrodynamic instabilities (2) kinetic instabilities. Plasma instabilities are also categorised into different modes  see this paragraph in plasma stability.
Instabilities of stellar systems
Galaxies and star clusters can be unstable, if small perturbations in the gravitational potential cause changes in the density that reinforce the original perturbation. Such instabilities usually require that the motions of stars be highly correlated, so that the perturbation is not "smeared out" by random motions. After the instability has run its course, the system is typically "hotter" (the motions are more random) or rounder than before. Instabilities in stellar systems include:
See also
Plasma stability
Notes
External links
de:Instabilit t es:Inestabilidad fr:Instabilit (homonymie) ru: sl:Nestabilnost uk:
