Transfinite numbers are numbers that are "infinite" in the sense that they are larger than all finite numbers, yet not necessarily absolutely infinite. The term transfinite was coined by Georg Cantor, who wished to avoid some of the implications of the word infinite in connection with these objects, which were nevertheless not finite. Few contemporary writers share these qualms; it is now accepted usage to refer to transfinite cardinals and ordinals as "infinite". However, the term "transfinite" also remains in use.
Definition
As with finite numbers, there are two ways of thinking of transfinite numbers, as ordinal and cardinal numbers. Unlike the finite ordinals and cardinals, the transfinite ordinals and cardinals define different classes of numbers.
The continuum hypothesis states that there are no intermediate cardinal numbers between alephnull and the cardinality of the continuum (the set of real numbers): that is to say, alephone is the cardinality of the set of real numbers. (If Zermelo Fraenkel set theory (ZFC) is consistent, then neither the continuum hypothesis nor its negation can be proven from ZFC.)
Some authors, including P. Suppes and J. Rubin, use the term transfinite cardinal to refer to the cardinality of a Dedekindinfinite set, in contexts where this may not be equivalent to "infinite cardinal"; that is, in contexts where the axiom of countable choice is not assumed or is not known to hold. Given this definition, the following are all equivalent:

m is a transfinite cardinal. That is, there is a Dedekind infinite set A such that the cardinality of A is m.

m + 1 = m.

\scriptstyle {\aleph_0} m.
 there is a cardinal n such that \scriptstyle {\aleph_0} + n = m.
See also
References
ar: es:N mero transfinito fr:Nombre transfini ko: it:Numero transfinito lmo:N mar transfinii mk: nl:Transfiniet getal no:Transfinite tall pt:N mero transfinito sl:Transfinitno tevilo sv:Transfinita tal zhyue: zh:
