Search: in
Transfinite number
Transfinite number in Encyclopedia Encyclopedia
  Tutorials     Encyclopedia     Videos     Books     Software     DVDs  
       





Transfinite number

Transfinite numbers are numbers that are "infinite" in the sense that they are larger than all finite numbers, yet not necessarily absolutely infinite. The term transfinite was coined by Georg Cantor, who wished to avoid some of the implications of the word infinite in connection with these objects, which were nevertheless not finite. Few contemporary writers share these qualms; it is now accepted usage to refer to transfinite cardinals and ordinals as "infinite". However, the term "transfinite" also remains in use.

Definition

As with finite numbers, there are two ways of thinking of transfinite numbers, as ordinal and cardinal numbers. Unlike the finite ordinals and cardinals, the transfinite ordinals and cardinals define different classes of numbers.

The continuum hypothesis states that there are no intermediate cardinal numbers between aleph-null and the cardinality of the continuum (the set of real numbers): that is to say, aleph-one is the cardinality of the set of real numbers. (If Zermelo Fraenkel set theory (ZFC) is consistent, then neither the continuum hypothesis nor its negation can be proven from ZFC.)

Some authors, including P. Suppes and J. Rubin, use the term transfinite cardinal to refer to the cardinality of a Dedekind-infinite set, in contexts where this may not be equivalent to "infinite cardinal"; that is, in contexts where the axiom of countable choice is not assumed or is not known to hold. Given this definition, the following are all equivalent:

  • m is a transfinite cardinal. That is, there is a Dedekind infinite set A such that the cardinality of A is m.
  • m + 1 = m.
  • \scriptstyle {\aleph_0} m.
  • there is a cardinal n such that \scriptstyle {\aleph_0} + n = m.

See also

References

ar: es:N mero transfinito fr:Nombre transfini ko: it:Numero transfinito lmo:N mar transfinii mk: nl:Transfiniet getal no:Transfinite tall pt:N mero transfinito sl:Transfinitno tevilo sv:Transfinita tal zh-yue: zh:






Source: Wikipedia | The above article is available under the GNU FDL. | Edit this article



Search for Transfinite number in Tutorials
Search for Transfinite number in Encyclopedia
Search for Transfinite number in Videos
Search for Transfinite number in Books
Search for Transfinite number in Software
Search for Transfinite number in DVDs
Search for Transfinite number in Store




Advertisement




Transfinite number in Encyclopedia
Transfinite_number top Transfinite_number

Home - Add TutorGig to Your Site - Disclaimer

©2011-2013 TutorGig.info All Rights Reserved. Privacy Statement