Search: in
Asymmetric norm
Asymmetric norm in Encyclopedia Encyclopedia
  Tutorials     Encyclopedia     Videos     Books     Software     DVDs  
       





Asymmetric norm

In mathematics, an asymmetric norm on a vector space is a generalization of the concept of a norm.

Definition

Let X be a real vector space. Then an asymmetric norm on X is a function p : X   R satisfying the following properties:

  • non-negativity: for all x   X, p(x)   0;
  • definiteness: for x   X, x = 0 if and only if p(x) = p(−x) = 0;
  • homogeneity: for all x   X and all λ   0, p(λx) = λp(x);
  • the triangle inequality: for all xy   X, p(x + y)   p(x) + p(y).

Examples

  • On the real line R, the function p given by
p(x) = \begin{cases} |x|, & x \leq 0; \\ 2 |x|, & x \geq 0; \end{cases}
is an asymmetric norm but not a norm.
  • More generally, given a strictly positive function g : Sn−1   R defined on the unit sphere Sn−1 in Rn (with respect to the usual Euclidean norm | |, say), the function p given by
p(x) = g(x/|x|) |x| \,
is an asymmetric norm on Rn but not necessarily a norm.

References






Source: Wikipedia | The above article is available under the GNU FDL. | Edit this article



Search for Asymmetric norm in Tutorials
Search for Asymmetric norm in Encyclopedia
Search for Asymmetric norm in Videos
Search for Asymmetric norm in Books
Search for Asymmetric norm in Software
Search for Asymmetric norm in DVDs
Search for Asymmetric norm in Store




Advertisement




Asymmetric norm in Encyclopedia
Asymmetric_norm top Asymmetric_norm

Home - Add TutorGig to Your Site - Disclaimer

©2011-2013 TutorGig.info All Rights Reserved. Privacy Statement